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Abstract

The wide availability of precise radiocarbon dates has allowed researchers in a number of
disciplines to address chronological questions at a resolution which was not possible 10 or 20
years ago. The use of Bayesian statistics for the analysis of groups of dates is becoming a
common way to integrate all of the radiocarbon evidence together. However, the models most
often used make a number of assumptions which may not always be appropriate. In particular,
there is an assumption that all of the radiocarbon measurements are correct in their context
and that the original radiocarbon concentration of the sample is properly represented by the
calibration curve.

In practice in any analysis of dates some are usually rejected as obvious outliers. However
there are Bayesian statistical methods which can be used to perform this rejection in a more
objective way (Christen, 1994b) but these are not often used. This paper discusses the underlying
statistics and application of these methods, and extensions of them, as they are implemented
in OxCal v4.1. New methods are presented for the treatment of outliers, where the problems
lie principally with the context rather than the radiocarbon measurement. There is also a full
treatment of outlier analysis for samples which are all of the same age which takes account of
the uncertainty in the calibration curve. All of these Bayesian approaches can be used either
for outlier detection and rejection or in a model averaging approach where dates most likely to
be outliers are downweighted.

Another important subject is the consistent treatment of correlated uncertainties between
a set of measurements and the calibration curve. This has already been discussed by Jones
and Nicholls (2001) in the case of marine reservoir offsets. In this paper the use of a similar
approach for other kinds of correlated offset (such as overall measurement bias or regional offsets
in the calibration curve) is discussed and the implementation of these methods in OxCal v4.0
is presented.
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1 Introduction

Before considering statistical methods for the treatment of outliers and offsets, it is important to
understand the underlying mechanisms and issues. There are essentially four main reasons why in
any context radiocarbon dates might not give the ‘right’ result:

• The radiocarbon measurement of a particular sample might not be correct (s)

• The radiocarbon ratio of a sample might be different from that of the associated reservoir (r)

• A whole set of radiocarbon measurements might be biased in some way relative to the calibra-
tion curve - either because the measurements themselves are biased or because the reservoir
from which the sample draws its carbon might not have the expected radiocarbon isotope
ratio (d)

• The sample measured might not relate to the timing of the event being dated (t)

Ideally the uncertainty quoted in the radiocarbon measurement covers the first possibility (s) -
though in some instances it may be that the errors in the measurements are not normally dis-
tributed. For this reason it might be that in radiocarbon calibration, rather than adopting a
Normal distribution, for a more robust model we should be using a longer-tailed distribution (such
as a student’s t-distribution). Another approach has been suggested where we assume that in a
small proportion of cases the measurement effectively has an uncertainty which is larger by some
factor (Christen, 1994b, 2003).

In the second case (r), the measurement is correct but the radiocarbon isotope ratio might be
different from that of the calibration curve at the associated age for some reason. This might be
due to short-term fluctuations in radiocarbon concentrations in particular reservoirs or due to an
admixture of carbon from different sources. Such offsets are analogous to the first category but will
not be related in any way to the measurement uncertainty or be improved by multiple measurement.

The two categories given for the third reason (d) are very different in their cause, but essentially
the same in their effect. The situation here is that the measurements made for the calibration curve
and those for the sample have a systematic offset relative to one another. Where such offsets are
recognised they can be taken into account using a ∆R correction (Stuiver and Braziunas, 1993).
In principle unknown offsets can be treated in similar way using a ∆R with a mean of zero and an
uncertainty which reflects the possible scale of offsets between the measurement sets. The correct
statistical treatment of such systematic offsets has been described by Jones and Nicholls (2001).

Finally we come to, what is probably the most common form of outlier, where the sample does
not for some reason relate to the dated event in the intended way (t). Here the radiocarbon
measurements are correct and the values relate correctly to the calibration curve data-sets but
there is some sort of calendar offset between the measurement and the event of interest. In some
instances such outliers are due to aspects of the deposition process which are hard to understand.
In other cases we know why samples might be (or are) outliers: for example in the case of charcoal
we usually expect the samples to be older than their context. This type of outlier is not restricted
specifically to radiocarbon dating or contamination at the sampling stage.
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All of these types of outlier can be treated statistically using essentially similar methods but in
slightly different ways. The purpose of this paper is to summarise these approaches and describe
the implementation of their algorithms in v4.1 of the analysis program OxCal (Bronk Ramsey,
1995, 2001, 2008).

2 Treatment of outliers

In general there are two main ways of dealing with outliers. The first is to try to identify all outliers
and then eliminate them manually from the analysis. If this is possible, then it is probably the best
approach since it is then entirely clear what data are being used to support the analysis. The other
approach is to assume that we can never really be sure whether any particular measurement is an
outlier, but to weight samples according to how likely they are to be correct in a model averaging
approach. This outlier analysis approach requires us to provide a prior probability for how likely
any individual measurement is to to be wrong and then some model to determine how we should
revise this in the context of all of the other information available.

2.1 Manual rejection

How you identify outliers for rejection is a complex topic. The most important considerations
are the sample context and details of the measurement process itself. These should allow us to
identify which samples might have give anomalous radiocarbon measurements or have a complex
depositional history. It is also possible to use statistical methods to indicate which samples seem
anomalous within their context to support these decisions. You can either use the outlier analysis
methods outlined by Christen (1994b) and in this paper or use the agreement index (Bronk Ramsey,
1995) calculated by OxCal. In practice for identification purposes both methods work well - indeed
in almost all instances the same samples will be identified by either. In both cases the level at
which we start to reject samples is somewhat arbitrary. If you use the agreement index method,
unless a sample has been rejected, all measurements are given equal weight. With outlier analysis
samples are progressively down-weighted as they are more likely to be outliers and so the results
from the analysis are essentially an average between a model in which the measurement is accepted
and one in which it is rejected. If you do not wish to have model averaging, but do wish to use
outlier analysis solely for outlier detection, you should first run a model with outlier analysis, see
which measurements are likely to be spurious and then run it again, without outlier analysis but
with some of the spurious results removed entirely.

In OxCal v4.1 there are three tools which can be used to help with the manual elimination of
outliers. The first is the calculation of the agreement index for each sample - if this falls below
60%, rejection should be considered. However, it should be remembered that approximately one
in twenty samples are likely to fall below this level and such rejection should also be based on
other criteria. Secondly an overall agreement index is calculated Amodel and if this is above 60% it
probably indicates that there is no problem with the model as a whole (and therefore no samples
need be rejected). Finally there is a command Outlier() which can be used to flag a measurement
as a definite outlier and remove it from the model (note in earlier versions of OxCal this command
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was Question() but otherwise worked in the same way).

2.2 Outlier analysis

In order to deal with outliers statistically we need to have some sort of a model for how we expect
them to be distributed. We also ought to define, in the case of radiocarbon, whether we think
it is the radiocarbon measurement that is incorrect for some reason or if it is the context that is
uncertain. Usually in radiocarbon dating we assume that a specific radiocarbon measurement ri,
will differ from the prevailing radiocarbon concentration r(ti), given to us by the calibration curve,
by an amount εi such that:

ri = r(ti) + εi (1)
εi ∼ N(0, s2i + (s(ti))2) (2)

So that the difference is entirely accounted for by the uncertainties quoted for the measurement
(si) and the calibration curve (s(ti)). In outlier analysis we need to be able to deal with other kinds
of offset. We introduce another parameter φi which is 1 if the sample is an outlier and 0 if it is not.

OxCal v4.1 provides the tools to set up such models. The tools are generic and allow a wide variety
of models to be employed. However it should be stressed that it is usually best to keep things fairly
simple and in most cases one model should be all that is required. The two commands that have
been introduced to provide outlier analysis are:

Outlier Model([ name,] distribution [,scale [,type ] ] );
Outlier([ name,] [ prior ] );

The Outlier Model() command defines the model and the Outlier() command allows it to be
applied to specific radiocarbon dates or other likelihood information in the model. The parameters
of the model are:

• name - this is the name of the model; this can be used to allow the specification of more than
one outlier model; if the name is not specified, the last model defined will be used for any
outlier analysis; if for example you wish to use a special model for all charcoal samples the
name "charcoal" can be given to both the Outlier Model() and the associated Outlier()
commands.

• distribution - this defines how the outliers are to be distributed (distribution D1); examples of
useful distributions are T(5), a student-t distribution with five degrees of freedom, N(0,1), a
simple normal distribution, or Exp(1,-10,0), an exponential distribution with an exponential
constant τ of 1 taken over the range -10 to 0.
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• scale - this defines the scaling of the outliers, expressed in powers of 10; this can be a single
number such as 0 for no scaling or 2 for a scale of 100 years; it can also be a distribution
(distribution D2) such as U(0,4) for a scale of anywhere between 1-10000 years - in this case
the analysis will determine the appropriate scale.

• type - this defines the kind of outlier you have; the options are "t" for outliers in the time
variable, "r" for those in the radiocarbon isotope ratio and "s" for those that scale with the
uncertainty in the radiocarbon concentration.

• prior - for any specific measurement this defines the prior probability that the sample is an
outlier; a typical value for this would be 0.05 for a 1 in 20 chance that the measurement
needs to be shifted in some way. The posterior probability for the measurement being an
outlier will be determined by the analysis.

The distribution and scale parameter can be defined in a number of ways in OxCal. They can
either be constant numbers (this only makes sense for the scale) or they can be distributions. The
relevant distributions defined in OxCal are shown in Table 1.

To see how these commands are to be used in practice we will look at some specific applications.
You can also see the examples in the following section.

First of all we will consider the situation where the radiocarbon measurement itself might be at
fault. We will further assume that any offsets are in proportion to the uncertainty quoted in the
date. In this situation the model outlined by Christen (2003) is most appropriate. In this model
(s-type) any shift in the measurement is drawn from a normal distribution which has double the
uncertainty of the measurement:

ri = r(ti) + εi + φiδisi (3)
εi ∼ N(0, s2i + (s(ti))2) (4)
φi ∼ Bernoulli(qi) (5)
δi ∼ N(0, 2) (6)

Definition Example Meaning
Exp([ name,] tau , from , to [,resolution ]); Exp(1,-10,0) exponential distribution

range -10 - 0 with τ = 1
N([ name,] mu , sigma [,resolution ]); N(0,2) Normal distribution

µ = 0, σ = 2
T([ name,] freedom , [ scale [,resolution ]]); T(5) student t-distribution

5 degrees of freedom
U([ name,] from , to [,resolution ]); U(0,1) uniform distribution

range 0 - 1

Table 1: Distribution definitions in OxCal; the optional resolution parameter defines the bin size
during the MCMC analysis - if not specified a suitable default is chosen
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where qi is the prior probability that the sample is an outlier. In OxCal this can be specified by:

Outlier_Model("SSimple",N(0,2),0,"s");

Effectively this model draws the shifts from a normal distribution with a mean of zero and a
standard deviation of 2 and they are then multiplied by the uncertainty in the date and applied
to the radiocarbon measurement. So if for example the uncertainties in all the measurements are
50, the possible shifts are drawn from a normal distribution with a mean of zero and a standard
deviation of 100. This is the default model for radiocarbon dates if no other is specified.

Supposing instead we have some other reason why the radiocarbon dates and those in the calibration
curve may not be the same - perhaps there is possible contamination, or addition of radiocarbon
from other reservoirs. In such cases (r-type) the offsets will not be related to the uncertainty in the
measurement. In these cases our outlier model is modified:

ri = r(ti) + εi + φi10uδi (7)
εi ∼ N(0, s2i + (s(ti))2) (8)
φi ∼ Bernoulli(qi) (9)
δi ∼ D1 (10)
u ∼ D2 (11)

where u is a scaling parameter common to the model as a whole and where D1 and D2 are distri-
butions we can choose, according to modeling preference, from those given in Table 1. We might
know the scale of such offsets, in which case we can fix u. If we know that they are likely to be of
the order of a hundred years we can let them be drawn from a normal distribution with a mean of
zero and a standard deviation of 100, by setting u = 0 and D1 to N(0, 100):

Outlier_Model("RSimple",N(0,100),0,"r");

If we do not know what sort of offset we are expecting we can allow the model to find the scale
(anywhere between 100 and 104) and so use U(0, 4) for D2 and let the possible shifts be drawn
from a longer tailed student-t distribution by using T (5) for the distribution D2 instead:

Outlier_Model("RScaled",T(5),U(0,4),"r");

The case where there might be a systematic offset between the measurements and the calibration
curve (d-type) is a special case and is discussed in section 3.4.

In many cases though, the possible offsets are not in the radiocarbon scale but in the time scale
(t-type). This type of outlier is applicable to other dating methods as well as radiocarbon. In the
radiocarbon case we would then define:
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ri = r(ti + φi10uδi) + εi (12)
εi ∼ N(0, s2i + (s(ti + φi10uδi))2) (13)
φi ∼ Bernoulli(qi) (14)
δi ∼ D1 (15)
u ∼ D2 (16)

Again we might know the time-scale. For example if we have bioturbation in a sediment it might
add a temporal offset between primary deposition and final location which is of the order of a
hundred years. We could express this as:

Outlier_Model("TSimple",N(0,100),0,"t");

This is the default outlier model applied for non-radiocarbon measurements if no other is specified.
In most cases however we do not know the scale of any such offsets and so a more general model is
more appropriate:

Outlier_Model("General",T(5),U(0,4),"t");

This is the model the author would recommend for most purposes. It draws from a long-tailed
distribution (D1 is T (5)) and so will not be too affected by the odd extreme outlier and the scale
(determined by the analysis) can be anywhere between 100 and 104 years (D2 is U(0, 4)).

In some instances we might wish to use a more specific model. For example consider the case of
charcoal samples. These are often discounted or used only as a terminus post quem. However
in reality we know rather more than this. In particular many charcoal dates are likely to be only
very slightly earlier than the date of deposition with a long tail of older dates from old wood or
redeposited charcoal. Such a distribution is likely to be approximately exponential (as suggested
by Nicholls and Jones (2001)) but with an unknown time constant (longer than a year but shorter
than a thousand years). This can all be put into an outlier model suitable for charcoal:

Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t");

Here we only allow outliers to be older - so the exponential distribution is taken to run from -10
to 0 with a time-constant of 1. The shifts are then scaled by a common scaling factor that can lie
anywhere between 100 and 103 years. In the case of charcoal samples we know that all samples are
expected to be outliers (that is all earlier than context) and so they should be given a prior outlier
probability of 1.
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Ref Lab ref. Date ± Prior Posterior
QS1 T18161a, aa 2818 26 0.05 0.08
QS2 RTT3932.3-6 2692 24 0.05 1.00
QS3 RTT3931.3-5 2911 26 0.05 0.62
QS4 LSC3931.1 2853 25 0.05 0.03
QS5 GrN27719 2895 25 0.05 0.33
QS6 RTT 3853.1,3,4 2753 22 0.05 1.00
QS7 T3930 2800 25 0.05 0.33
QS8 T3933a, aa 2882 28 0.05 0.10
QS9 GrA25535 2864 40 0.05 0.02
QS10 GrA25710 2818 38 0.05 0.04
QS11 GrA25768 2897 44 0.05 0.06

Table 2: Dates from Tell Qasile X; the prior probability for each measurement being an outlier has
been set to 0.05 (or 5%); the analysis output provides posterior probabilities for each measurement
being an outlier

3 Examples

3.1 Combination of dates for samples of the same age

One situation where outlier detection can be useful is when you have a large number of radiocarbon
dates all pertaining to one context but measured by different laboratories using different techniques.
The congruity of such a set can be tested using the non-Bayesian χ2 test of Ward and Wilson
(1978). However, what do you do if the test fails? Using outlier detection you can down-weight
those measurements which disagree most with the others and also identify which these are. As an
example we will take radiocarbon dates from the important context X in Tell Qasile as reported in
Boaretto et al. (2005) and Sharon et al. (2007). The measurement history is complicated and will
not be discussed here. We will take 11 of the measurements reported for this context, all of which
are supposed to be the same age.

The dates are all entered with a prior probability of being an outlier of 0.05. The model outlined by
Christen (2003) has been applied but the treatment of the errors in the calibration curve is slightly
different (see section on mathematical details below). This set of dates fails the χ2 test (df=10,
T=70 cf. 18.3) but the advantage of this kind of analysis is that in a controversial case like this
you do not need to make a qualitative assessment of which dates are most likely to be wrong. You
can see from Table 2 that two of the dates are identified as being definite outliers (QS2 and QS6).
One other date (QS3) is also more likely to be an outlier than not.

Of course what any statistical analysis cannot do is identify the reasons why there are outliers. It
could be that some of the samples really are of a different age, that there are contaminants present
in some of the samples or that there is a measurement problem of some kind. Outlier analysis is
useful, however in identifying which samples are most likely to be significantly wrong and providing
an objective estimate of the true age of the sample set.
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Outlier_Model(N(0,2),0,"s");
R_Combine("")
{
R_Date("QS1", 2818,26){Outlier(0.05);};
R_Date("QS2", 2692,24){Outlier(0.05);};
R_Date("QS3", 2911,26){Outlier(0.05);};
R_Date("QS4", 2853,25){Outlier(0.05);};
R_Date("QS5", 2895,25){Outlier(0.05);};
R_Date("QS6", 2753,22){Outlier(0.05);};
R_Date("QS7", 2800,25){Outlier(0.05);};
R_Date("QS8", 2882,28){Outlier(0.05);};
R_Date("QS9", 2864,40){Outlier(0.05);};
R_Date("QS10",2818,38){Outlier(0.05);};
R_Date("QS11",2897,44){Outlier(0.05);};

};

Figure 1: Model specification for outlier analysis of Tel Qasile dates
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OxCal v4.1.0 Bronk Ramsey (2008); r:5; IntCal04 atmospheric curve (Reimer et al 2004)

Figure 2: Combination of dates from tel Qasile X using the outlier analysis. The results of simple
combination can be seen as an outline distribution in light grey; the results of the analysis are
shown in darker grey and provide a significantly different age estimation.
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Outlier_Model("General", T(5), U(0,4),"t");
P_Sequence("Simulation 4",1)
{
Boundary(){z=480;};
R_Date("4T47",11000,50){z=470; Outlier(0.05);};
R_Date("4T46",11023,50){z=460; Outlier(0.05);};
...
R_Date("4T2", 6901, 50){z=20; Outlier(0.05);};
R_Date("4T1", 6377, 50){z=10; Outlier(0.05);};
Boundary(){z=0;};

};

Figure 3: Model specification for outlier analysis of the sedimentary sequence for dataset 4 from
Blockley et al. (2007)

3.2 Temporal outliers in a sedimentary sequence

The next example we will turn to is the situation where you have a sedimentary sequence where
some of the samples are out of context and therefore give the wrong age for their depth. Such a
situation might arise where there is significant bioturbation. To illustrate this example we can look
at the simulation dataset 4 shown in Figure 6 of Blockley et al. (2007). In this case some of the
datapoints had been deliberately offset from their expected values to simulate the effect of outliers.
Without the use of outlier analysis it is necessary to work through the sequence eliminating those
samples that have very low agreement indices in order to get a consistent model. In particular one
or two of the points are so far out that the model will not run with them included.

However it is possible to use the general temporal outlier model described above instead of such a
laborious and subjective procedure. Figure 3 shows how such a model is specified and Figure 4 the
results of such an analysis, using a model averaging approach.

3.3 Treatment of charcoal samples

Here we give a hypothetical example to show how this might work in practice. We have a single
phase of occupation which is dated by some bone dates and a series of charcoal dates. The charcoal
is not short-lived and so we assume that it must always be older than its context. Figure 5 shows
how such a model is specified and Figure 6 shows the results of the analysis.

In this particular case it can be deduced that the time-constant for residence of charcoal on the
site lies in the range 10-100 years (see Figure 6c). In this instance the charcoal dates do add
significantly to the model - many of the samples are no older than the bone dates and therefore
provide important information on the date of the end of the phase and on its duration.
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Figure 4: Age depth model for dataset 4 from Blockley et al. (2007) using outlier analysis. The
results of simple calibration can be seen as an outline distribution with white fill; the results of the
analysis are shown in black; you can see that some dates which are clearly outliers (such as the
7th from the top) are ignored in the analysis; this approach removes the need to weed out outliers
manually before conducting such an analysis.
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Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t");
Sequence()
{
Boundary("Start 1");
Phase("1")
{
Label("Bone samples");
R_Date(1000, 20);
R_Date(1060, 20);
R_Date(1020, 20);
R_Date(1070, 20);
Label("Charcoal samples");
R_Date(1200, 20){Outlier(1);};
R_Date(1000, 20){Outlier(1);};
R_Date(1030, 20){Outlier(1);};
R_Date(1010, 20){Outlier(1);};
R_Date(1070, 20){Outlier(1);};
R_Date(1050, 20){Outlier(1);};
R_Date(1130, 20){Outlier(1);};
R_Date(1070, 20){Outlier(1);};
R_Date(1100, 20){Outlier(1);};
};
Boundary("End 1");

};

Figure 5: Model specification for a phase with bone and charcoal dates. Note that the Outlier
command links to the last specified Outlier Model (in this case "Charcoal" if no name is specified.
The command Outlier("Charcoal",1) could be used in each case instead.
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Figure 6: The results of the analysis of the model with charcoal dates. The charcoal dates act as
a terminus ante quem for the end of the phase but some are clearly much earlier than the start
as you can see in the upper plot (a). The outline distributions show the simple calibrations and
the black distributions show the estimate of the deposition dates of the samples (ti). In the lower
left plot (b) you can see both the effective prior (from equation 88) and the posterior distribution
of the outlier offsets (10uδi) which give an estimate for the charcoal ages on the site. In the lower
right plot (c) the estimated time-scale (in powers of 10) for charcoal residuality on the site (the
posterior distribution for u with the uniform prior shown in outline).
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3.4 Systematic offsets relative to the calibration curve

As an example of such an application we can consider the dataset of Imamura et al. (2007). They
give data for two tree ring sequences from Japan, one of which is a reference data-set of known age
(outer ring 350 AD) and another sample data-set from a short 43 sequence which has been dendro-
chronogically dated (outer ring 389 AD). The standard D Sequence analysis can be carried out for
both series but, although the reference series correctly dates to 335-357AD (95.4% probability),
the other sample has a bi-modal distribution with ranges 295-309 AD (86%) or 373-387 AD (9%)
just missing the true value. If we now reanalyse the same two series together with a systematic
∆R value of 0± 10 the first still dates to a range 334-361 AD (95.4%) consistent with the correct
value. The other still has a bi-modal distribution but the ranges are now 295-317AD (47.5%) and
370-395AD (47.9%) which is now in good agreement with the true value. The comparison between
the two analyses can be seen in Figure 7. The reason that this works is that the analysis is able to
make use of the fact that both series fit to the calibration curve better with a small systematic offset
relative to the calibration curve. We can also get information on the nature of this shift. Figure 7
shows the prior and posterior for the ∆R, showing, in the posterior, a bi-modal distribution. The
shift to positive ∆R gives the ’correct’ fit whereas that to the left gives an equally good but ’wrong’
fit for the data.

The analysis works well in this case because the reference data-set is effectively able to inform the
model about the offset - even though we have not used the calendar age in the analysis. If we
use the same ∆R value of 0± 10 and analyse the problematic sample series on its own we still do
better than with no allowance for ∆R with a bi-modal range of 294-325 AD (83.3%) or 374-391
AD (12.1%) which is just in agreement with the true value. There is still a substantially higher
earlier peak since, even allowing for offsets, this series does match the earlier part of the curve
slightly better (see Figure 7). What is clear from this analysis is that even a small allowance for
systematic offsets can have a significant effect on the accuracy of the result. What the statistical
analysis cannot tell us is whether the offset is due to differences in measurement or a true regional
offset.

This kind of robustness test is very important even in cases where we do not expect outliers.

4 Statistical details

In general the treatment of outliers described here is embedded in more general Bayesian analysis.
Bayes theorem tells us that:

p(t|y) ∝ p(y|t)p(t) (17)

where t are the set of parameters and y the observations or measurements made. In this equation
p(t) gives our prior knowledge about the parameters (this can include phase models, sequences
or deposition models as required). The part of the equation most important for this paper is the
likelihood p(y|t) which is used to work out our posterior p(t|y). In many cases (when the data are
conditionally independent) it is possible to factorize the likelihood into individual elements:

p(y|t) =
∏
i

p(yi|ti) (18)
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Figure 7: The results of the re-analysis of the datasets of Imamura et al. (2007). The upper figure
shows the modelled end date for the sequences using the models described in the text (in dark
grey) compared to those with no allowance for offsets (in light grey). The lower figure shows the
posterior density estimates of the true reservoir offset (in dark grey) together with the priors (in
light grey).
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We use the approach of Abraham and Box (1978) as used by Christen (1994b) to deal with ob-
servations which are spurious in some way. In order to formalise this we consider the form of the
likelihood function p(yi|ti). This will in general be some function of the observed variable(s) yi and
the parameter(s) ti involved, where the age determination are indexed i = 1, 2, . . . , n:

p(yi|ti) = li(yi, ti) (19)

In the case of radiocarbon dating the observation consists of both the radiocarbon measurement ri
and its uncertainty si. To use this for calibration we also need to have a calibration curve which
gives the expected radiocarbon concentration, r(t) and the uncertainty s(t) both as a function of
calendar time. Using the usual error model, with an error of εi for each measurement:

ri = r(ti) + εi (20)
εi ∼ N(0, s2i + (s(ti))2) (21)

the radiocarbon likelihood function then becomes:

p(ri|ti) = li(ri, si, ti) ∝
exp

(
− (ri−r(ti))2

2(s2i+(s(ti))2)

)
√
s2i + (s(ti))2

(22)

In order to model the possibility of outliers we introduce two more parameters for each observation.
These parameters are φi which can take values 1 (if the observation is spurious and an outlier) or
0 (if the observation is correct) and δi which defines the offset in the observation if it is spurious.
We define the priors for φi to be some predetermined value qi if it is 1 (an outlier) and (1− qi) if
it is 0 (not an outlier):

φi ∼ Bernoulli(qi) (23)

Where the Bernoulli distribution is:

X ∼ Bernoulli(q)⇔ Pr(X = x) = qx(1− q)1−x (24)

The prior for δi also needs to be specified and normalised. We now need to consider the different
forms of outliers.

4.1 Outliers with respect the time parameter (t-type)

In this case what we are essentially modelling for is not a wrong measurement of a variable but a
wrong interpretation in terms of the parameters of the model. In this case we define the offset in
terms of ti so that in the simplest case:

p(yi|ti, φi, δi) = li(yi, ti + φiδi) (25)

Such a model can be specified in OxCal by specifying the prior distribution for δi and the outlier
probability qi. For example:

Outlier_Model("TSimple",N(0,100),0,"t");
R_Date("OxA-12345",1423,23){Outlier(0.1,"TSimple");};
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sets up the following priors and likelihood:

ri = r(ti + φiδi) + εi (26)
εi ∼ N(0, s2i + (s(ti + φiδi))2) (27)
δi ∼ N(0, 100) (28)
φi ∼ Bernoulli(0.1) (29)

p(ri|ti, φi, δi) = li(ri, si, ti + φiδi) (30)

∝
exp

(
− (ri−r(ti+φiδi))2

2(s2i+(s(ti+φiδi))2)

)
√
s2i + (s(ti + φiδi))2

(31)

This is the default outlier model in OxCal for everything other than radiocarbon dates. However in
many cases we would rather not specify the functional form of the prior for δ so definitely. For this
reason we introduce a further model parameter, u which provides the scale for all of the outliers
associated with the model. In this model the likelihood becomes:

p(yi|ti, φi, δi, u) = li(yi, ti + 10uφiδi) (32)

We now need to provide a prior for u as well and this is given as another parameter in the OxCal
model definition. In addition it is better to use a longer tailed distribution than a normal distri-
bution, and the student-t distribution with about 5 degrees of freedom is probably most useful for
this (Venables and Ripley, 2002, p121). The reason for using such a long tailed distribution in
this type of model is that, under the processes leading to temporal outliers there are sometimes a
few very extreme outliers and we do not wish the modelled outlier distribution to be too heavily
dependent on these. Putting all of this together, the following is a reasonable general outlier model
for chronological applications:

Outlier_Model("TScaled",T(5),U(0,4),"t");
R_Date("OxA-12345",1423,23){Outlier("TScaled",0.1);};

This sets up the following priors and likelihood:

ri = r(ti + 10uφiδi) + εi (33)
εi ∼ N(0, s2i + (s(ti + 10uφiδi))2) (34)
δi ∼ T (5) (35)
u ∼ U(0, 4) (36)
φi ∼ Bernoulli(0.1) (37)

p(ri|ti, φi, δi, u) = li(ri, si, ti + 10uφiδi) (38)

where the T (ν) is the student’s t-distribution with ν degrees of freedom:

X ∼ T (ν)⇔ Pr(X = x) ∝
(

1 +
x2

ν

)−( ν+1
2 )

(39)

The reason for choosing a log-uniform distribution for the scale of offsets, is that many complex
systems exhibit power-law dependency over a range of scales and the log-uniform distribution
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Figure 8: This shows the effective prior for the offsets in the General model with the full range of
scales possible. The distributions is sharply peaked at zero (similar to the T(5) distribution) but
with very long shallow sloped tails.

gives scale invariance. In practice the outlier scale posterior is often approximately log-normally
distributed and this is easily seen as a normal distribution in u (as in Figure 6c). The effective
prior for the scaled offset 10uδi integrated over the range of values 0 < u < 4 and with δi ∼ T (5)
is shown in Figure 8: this is a very long tailed distribution. In most models u becomes fairly well
constrained and the distribution becomes closer to the T (5) distribution with an appropriate scale.

There are some dangers in having too many parameters in a model of this kind. In particular, if
there are very few measurements, there may be confounding effects between the single u parameter
and the δi parameters. For this reason with very small models it may be better to specify a fixed u.
If you use the above model, you should look at the distribution for u and check that the marginal
posterior is somewhat constrained (see diagnosis section below).

4.2 Outliers with underestimated uncertainties (s-type)

The construction of outliers with respect to the uncertainty quoted in the radiocarbon essentially
follows the same pattern except that in this case the offset implied is in the radiocarbon mea-
surement and not relative to the time parameter. This type of outlier obviously only makes sense
in relation to radiocarbon measurements. For a simple implementation, we define the likelihood
function to be:

p(ri|ti, φi, δi) = li(ri − φiδisi, si, ti) (40)

This is essentially identical to the method proposed for generalised models in Christen (1994b)
with the prior for the offset as defined in Christen (2003). The following model definition should
reproduce the case where the assumed prior for δi ∼ N(0, 2) or for the offset in the radiocarbon
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date δisi ∼ N(0, 2si):

Outlier_Model("SSimple",N(0,2),0,"s");
R_Date("OxA-12345",1423,23){Outlier("SSimple",0.1);};

and sets up the following priors and likelihood:

ri = r(ti) + εi + φiδisi (41)
εi ∼ N(0, s2i + (s(ti))2) (42)
δi ∼ N(0, 2) (43)
φi ∼ Bernoulli(0.1) (44)

p(ri|ti, φi, δi) = li(ri − φiδisi, si, ti) (45)

∝
exp

(
− (ri−φiδisi−r(ti))2

2(s2i+(s(ti))2)

)
√
s2i + (s(ti))2

(46)

This is the default outlier model applied by OxCal for radiocarbon dates if no other model is
specified. It is equivalent to an increased variance si when a measurement is identified as an
outlier. The program is set up to use an optional scaling parameter for this type of offset too in
which case the likelihood is given by:

ri = r(ti) + εi + 10uφiδisi (47)
u ∼ D2 (48)

p(ri|ti, φi, δi, u) = li(ri − 10uφiδisi, si, ti) (49)

where D2 is specified as for the t-type model. However, the model as defined by Christen (1994b)
is reasonable for most minor measurement problems and should probably be adopted as a standard
model as it is for outlier detection of this sort. This model is implemented in BCal (Buck et al.,
1999), Bwigg (Christen, 2003) and Bpeat (Blaauw et al., 2003).

4.3 Outliers in radiocarbon concentration (r-type)

This implementation of the outlier model is essentially identical to that of the previous section,
except that in this case we break the link with the original uncertainty in the measurement. The
likelihood function is defined to be:

p(ri|ti, φi, δi, u) = li(ri − 10uφiδi, si, ti) (50)

The definition of the model is then made in exactly the same way as for the t-type outliers:

Outlier_Model("RScaled",T(5),U(0,4),"r");
R_Date("OxA-12345",1423,23){Outlier("RScaled",0.1);};
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This sets up the following priors and likelihood:

ri = r(ti) + εi + 10uφiδi (51)
εi ∼ N(0, s2i + (s(ti))2) (52)
δi ∼ T (5) (53)
u ∼ U(0, 4) (54)
φi ∼ Bernoulli(0.1) (55)

p(ri|ti, φi, δi, u) = li(ri − 10uφiδi, si, ti) (56)

∝
exp

(
− (ri−10uφiδi−r(ti))2

2(s2i+(s(ti))2)

)
√
s2i + (s(ti))2

(57)

4.4 Offsets relative to the calibration curve (d-type)

This type of offset is essentially the same as the r-type outlier except in this case we assume that
the offset is definite (the offset probability is 1) and the same offset applies to all (or a whole
set of) radiocarbon measurements. Again we introduce a new model parameter d which defines
the modelled offset between the calibration curve and the set of measurements. This is a single
parameter which applies to all the dates (Jones and Nicholls, 2001; Nicholls and Jones, 2001). The
likelihood for each radiocarbon measurement then becomes:

p(ri|ti, d) = li(ri − d, si, ti) ∝
exp

(
− (ri−(r(ti)+d))

2

2(s2i+(s(ti))2)

)
√
s2i + (s(ti))2

(58)

In this equation you can see why mathematically a bias can be treated in the same way as a
reservoir offset. This kind of common offset is defined as a ∆R offset. In its more usual use we have
specific prior information for ∆R. However it can be used more generally and if for example there
is a possible small but unknown offset between a set of measurements and the calibration curve we
might set up a model with:

Delta_R(0,10);
R_Date("OxA-12345",1423,23);

This will set up the following prior and likelihood:

ri = r(ti) + εi + d (59)
εi ∼ N(0, s2i + (s(ti))2) (60)
d ∼ N(0, 10) (61)

p(ri|ti, d) = li(ri − d, si, ti) (62)

∝
exp

(
− (ri−d−r(ti))2

2(s2i+(s(ti))2)

)
√
s2i + (s(ti))2

(63)
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Several Delta R statements can be used in the same model but the implementation in OxCal does
not allow more than one such offset to apply to the same date.

4.5 Sampling and conditional probabilities

In all cases OxCal uses a straightforward Metropolis Hastings MCMC algorithm so only relative
probabilities are important. Each parameter of the outlier model is updated individually by sam-
pling from the full conditionals. For all of the models outlined here these are given by:

p(ti|t−i, yi, φi, δi, u, d) ∝ p(t)p(yi|ti, φi, δi, u, d) (64)

p(φi|ti, yi, δi, u, d) ∝ qφii (1− qi)1−φip(yi|ti, φi, δi, u, d) (65)
p(δi|ti, yi, φi, u, d) ∝ p(δi)p(yi|ti, φi, δi, u, d) (66)

p(u|t,y,o, δ, d) ∝ p(u)
∏
i

p(yi|ti, φi, δi, u, d) (67)

p(d|t,y,o, δ, u) ∝ p(d)
∏
i

p(yi|ti, φi, δi, u, d) (68)

4.6 Radiocarbon dates all pertaining to one event (s-type or r-type)

As identified by Christen (1994b), the special case of combinations of radiocarbon dates all pertain-
ing to one event needs to be treated slightly differently. The treatment presented there does not
account for errors in the calibration curve and so a full treatment including these will be presented
here.

Combination of radiocarbon dates is a two stage process. The assumption is that all of the mea-
surements relate to one calendar time and therefore all should correspond to the same original
radiocarbon concentration which we introduce as a parameter of the model ρc. Each measurement
(ri ± si) provides a likelihood function for this parameter:

p(ri|ρc) =
1

si
√

2π
exp(−(ri − ρc)2/(2s2i )) (69)

and thus for all of the measurements:

p(r|ρc) ∝
∏
i

exp(−(ri − ρc)2/(2s2i ))/si (70)

Now for convenience we define:

rc =

(∑
i

ri/s
2
i

)
/
(∑

1/s2i
)

(71)

sc =

(∑
i

1/s2i

)−1/2

(72)
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T =
∑
i

(ri − rc)2/s2i (73)

S =
∏
i

1
si

(74)

where rc ± sc is just the usual error weighted combination of the radiocarbon dates (Ward and
Wilson, 1978). This allows us to factorise the likelihood as:

p(r|ρc) ∝ S exp(−T/2)exp(−(rc − ρc)2/(2s2c)) (75)

This is just like the normally distributed likelihood for the radiocarbon ratio ρc you would get for
a single measurement but with a mean of rc and a standard deviation of sc. The uncertainty in the
calibration curve does not come in to the equation yet.

Now we need to consider the prior for the parameter ρc in the model. As for a single calibration
this is given by:

p(ρc, tc) ∝
1
s(t)

exp(−(ρc − r(tc))2/(2(s(t))2)) (76)

since if we integrate over ρc we get a constant value, independent of t. So given this we can now
integrate out the parameter ρc which we do not need:

p(r|ρc, tc) ∝
S

s(t)
exp(−T/2)exp(−(rc − ρc)2/(2s2c))exp(−(ρc − r(tc))2/(2(s(t))2)) (77)

p(r|tc) ∝
∫ ∞
ρc=−∞

p(r|ρc, tc)dρc (78)

∝ S exp(−T/2)
exp

(
− (rc−r(tc))2

2(s2c+(s(tc))2)

)
√
s2c + (s(tc))2

(79)

For the case where outliers are not considered T is a constant, and in any case S is a constant.

There are a number of useful elements that emerge from this. First of all T as defined in equation
73 is the test statistic described in Ward and Wilson (1978) which has a χ2 distribution with n− 1
degrees of freedom (where n is the number of combined radiocarbon dates). You can see that this is
directly related (c.f. Bronk Ramsey et al., 2001) to the probability of a particular set of radiocarbon
determinations for any ρc:

p(r) ∝
∫
ρc

exp(−(rc − ρc)2/(2s2c))dρc ∝ exp(−T/2) (80)

We can also now expand this treatment to deal with outliers. We offset ri to r′i.

r′i =


ri − φiδisi for un-scaled s-type
ri − φiδi for un-scaled r-type
ri − 10uφiδisi for scaled r-type

(81)

We repeat the same calculations to obtain r′c (this must be repeated for each iteration of the model).

p(tc|r,o, δ, d, u) ∝ p(t)lc(r′c − d, sc, tc) (82)

p(φi|tc, r,o−i, δ, d, u) ∝ qφii (1− qi)1−φiexp(−(r′i − r′c)2/(2s2i ))lc(r′c − d, sc, tc) (83)
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p(δi|tc, r,o, δ−i, d, u) ∝ p(δi)exp(−(r′i − r′c)2/(2s2i ))lc(r′c − d, sc, tc) (84)

p(u|tc, r,o, δ, d) ∝ p(u)lc(r′c − d, sc, tc)
∏
i

exp(−(r′i − r′c)2/(2s2i )) (85)

p(d|tc, r,o, δ, u) ∝ p(d)lc(r′c − d, sc, tc) (86)

4.7 Charcoal model

It is worth looking in a little more detail at the outlier model for charcoal samples outlined above.
This model covers a range of scales u from 0 to 3 and so effective prior for a single δ would be:

p(δ) ∝
∫ 3

u=0

exp(δ/10u)
10u

du (87)

∝ eδ − eδ/1000

δ
(88)

where δ is only allowed to be negative. In the suggested implementation this is truncated at -10000
years and can therefore be normalised. It is a vague prior which is well behaved near δ = 0 and is
plotted in Figure 6b. In practice in any model the time-scale u is considerably constrained and so
the distribution of outliers will be closer to a simple exponential. As above, it is important not to
introduce too many different parameters into a model and in this case the model suggested is only
suitable if there are many charcoal samples - if you only have one or two there will be confounding
effects between the u parameter and the δi parameters.

5 Diagnosis and robustness testing

When using the models outlined here it is worth testing how robust the posteriors are to changes
in the underlying models. This is one reason why it is important that all of the parameters of
the models in OxCal are specified by the user and so can be altered to see if they affect the
results. Robustness testing can easily be applied by trying different outlier models and prior outlier
probabilities.

Using the scaling factor 10u will allow the model averaging to cover a range of different scales and
should achieve more robust results. This is not necessary when using the outlier methods only for
outlier detection but it can be important when the method is used for obtaining realistic posterior
densities from the model average. One simple example demonstrates this fairly well: we consider
the case of a simple sequence of dates, with one obvious outlier, analysed under a number of different
outlier models - the results of this are shown in Figure 9. Here you can see that in particular, use
of the SSimple model (Figure 9a) actually puts quite strong constraints on measurements even if
they are identified as outliers - this model is not very good for model averaging when the outliers
are more extreme than the model intended. Using a longer tailed student-t distribution (Figure
9b) helps with this, but allowing the scale to adapt to the data (Figure 9c) provides a better overall
average result if the scale of outliers is not known in advance.

The more complex scaled models do, however, come with the risk of confounding effects - where
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Figure 9: This show a simple sequence under a number of different outlier models: (a) uses the
SSimple model as in Christen (2003), (b) uses a t-type outlier model with the offsets distributed
as 100T (5) using Outlier Model("TFixed",T(5),2,"t"), (c) uses the General model as defined
above with variable scaling, (d) manually removes the obvious outlier and replaces it with an
undated event. All outlier models identify the fifth radiocarbon date as a definite outlier and can
be used for outlier detection. However, given that the sample is an outlier we would expect the
modelled output to be similar to that shown in (d) where the date has been excluded: (a) shows
that the very prescribed SSimple model pulls the outlier date strongly towards the measurement,
even though it is an outlier, (b) which uses a longer-tailed T(5) distribution is more realistic but
(c) gives a better overall model average for this situation since the dated event posteriors are very
close to those shown in (d).
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one parameter is played off against another and this is particularly true if for small models. It
is possible for the user to check for model misbehaviour by looking at three aspects of the model
output: the convergence (see Bronk Ramsey (1995)) and the posterior distribution for the scaling
parameter u and the posterior outlier probabilities for φi. An number of situations can arise:

• the convergence can be very slow - this is often associated with the scale of the offsets being
hard to determine; in OxCal the model may never finish running at all if a satisfactory
convergence is not achieved - in such circumstances it may be necessary to use a simpler
model.

• the distribution for u may be poorly constrained and extend right up to the upper limit -
this is normally the consequence of using the scaled model for a dataset that is too small to
support it; the results will still provide a model average over the specified scales but it would
usually be better to use a simpler model in such circumstances.

• the distribution for u is well constrained at the upper limit but extends down to the lower
limit - this is normally the consequence of having a dataset where there may actually be no
outliers at all and you will find that the outlier posterior probabilities for φi are very close to
the priors qi; in such a situation there may be very small outliers that are undetectable and
the model is reflecting this; this is not in itself a problem but it does mean that the posteriors
will be at least marginally affected by the lower limit set for the scale parameter u and so a
sensitivity test for this would be useful.

Ideally the scaling parameter is well defined as in Figure 6c and the convergence is reasonably rapid
(though it will always be slower than for a model without outliers).

There is one other consideration which has been taken into account in the implementation of these
models and this is the special case where all of the measurements are outliers. In cases where this
is the intention (as in the charcoal example above) this is not a problem. However in most cases
with the longer tailed distributions suggested here there is such a range of possible solutions in
such cases that this can lead to extremely slow convergence. For this reason in cases where qi 6= 1,
and where there is more than one parameter tied to a particular outlier model, OxCal gives zero
probability to the case where all measurements are outliers.

6 Conclusions

The approaches to dealing with outliers and offsets presented here are not only intended to provide
detection of such offsets but also to provide good overall model averages which take into account a
large range of different scenarios. For this reason it is important, as in all Bayesian analysis, that
the models used reflect the underlying mechanisms. This is why a number of different models are
considered in this paper:

• s-type - where the radiocarbon measurement of a particular sample is wrong for some reason:
these cases can be treated with shift outliers in the radiocarbon concentration as discussed
in (Christen, 1994b, 2003).
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• r-type - where there are shifts between the radiocarbon concentration of the sample and its
presumed reservoir but where the measurement itself is accurate: in these cases a similar
approach can be used but independent of the uncertainty in the measurement itself.

• d-type - where the radiocarbon measurements are biased relative to the calibration curve -
either because of problems in the measurements or because of shifts in the radiocarbon ratio
of the reservoir: these cases can be effectively treated in the same way as ∆R offsets in marine
radiocarbon calibration (Stuiver and Braziunas, 1993; Jones and Nicholls, 2001; Nicholls and
Jones, 2001).

• t-type - where the sample measured might not relate to event being dated (t): in these cases
outlier analysis using shifts in the calendar time-scale can be used.

In the case of radiocarbon samples all relating to the same event, Ward and Wilson (1978) provide a
useful test of whether measurements are all compatible. However outlier analysis (s-type or r-type,
depending on whether the problems are likely to relate to the measurement of the radiocarbon
content of the sample) can be very useful in identifying which measurements are likely to be the
outliers and giving a more objective assessment of the true age than manual rejection.

More generally where samples might or might not be outliers (as is usually the case) the methods
outlined here allow an average of all of the possible combinations of rejection and acceptance
of measurements to be averaged over, taking into account the posterior probabilities for such
outliers. This model averaging approach is much more practical with large datasets that trying
many different models each with different dates rejected. It is also more robust than selection of
the outliers individually on the basis of agreement indices or outlier posterior probabilities and then
just analysing one model.

The implementation of all of these techniques in OxCal v4.1 has been presented so that researchers
can apply them to their own projects. The tools provided are very flexible but it should be stressed
that it is probably best not to make any one model more complicated than it needs to be. For
simple situations, with minor offsets, the original approach taken in Christen (2003) is likely to be
sufficient for outlier detection. In larger models where displacement from context is often the main
issue the general t-type model should provide a good solution. In other cases charcoal dates may
need a more specific model. It is unlikely, however, that much will be gained by applying several
different outlier models together, unless there are very good reasons for doing so.

The methods outlined here, if used in the right way, should start to address some of the problems
associated with analysing large numbers of radiocarbon dates and help to deal with issues of over-
precision which can arise if outliers and offsets are not considered at all.
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